Как подключить понижающий трансформатор для увеличения напряжения. Что делает повышающий трансформатор? Применение в сетях

Низкое напряжение в сети является серьезной проблемой, которая может повлечь за собой сгорание всей бытовой техники в доме. Если вы увидели что напряжение сети меньше чем 220вольт, то необходимо сразу же удалить эту неприятность. С недостаточным напряжением часто сталкиваются жильцы собственного дома, но в квартирах также бывает такое. В чем же заключается причина?

Низкое напряжение в сети: почему это происходит

Пониженное или слабое появление нагрузки электросети для частного дома это не редкость. Так же очень часто не хватает мощности для дачи. Этот факт доставляет много неудобств, не говоря о том, что человек не может воспользоваться помощью стиральной машины. Что делать в такой ситуации, куда позвонить, пожаловаться, а самое главное как самостоятельно проверить качество электросети? Недостаточное напряжение в сети является крайне неприятной ситуацией, но с ней сталкиваются практически все. Если освещение плохое и лампочка обозначает только свое присутствие, то это далеко не большая проблема. Хуже будет, когда стирка не возможна, кипячение воды нереально, никак не приготовить еду на электрической печке или работа холодильника проходит с перебоями. Такое часто случается при напряжении в сети меньше чем 180 вольт. Если все работает при таком напряжении, то это не очень хорошо влияет на приборы и процесс работы проходит более длительное время.

Выделим несколько основных причин низкого напряжения:

  • Сечение кабеля , который входит в дом неправильное;
  • Подключение выключателя выполнено не правильным образом;
  • Трансформатор подстанции перезагружается или частично вышел из строя;
  • Сечение магистральной линии маленькое;
  • Перекошенные фазы.

Это были перечислены самые распространенные причины. Если вы поняли что причина низкого напряжения в вашем доме такая как в 1м, 2м или 6м пункте, то исправление причины можно выполнить самостоятельно. Если вам подходят остальные 3 причины или одна из них, то вам стоит обратиться в обслуживающие станции.

Слабое напряжение в сети: что делать и кто виноват

Первое что необходимо выяснить – это кто виноват в низком напряжении. В многоэтажных домах это сделать очень легко, а именно пройтись к соседям и узнать, нет ли у них такой проблемы. В собственных домах необходимо опрашивать тех людей, которые питаются электроэнергией от той линии, что и вы. А именно просмотрим на линию электропередач, запоминаем, от каких линий подходит электричество к вашему дому, от этих проводов будет подходить линия и к тем, кто запитан на вашей линии.


Можно также отключить от сети все приборы и измерить напряжение. Если напряжение нормальное, а после включения пару приборов падает, то причина низкого напряжения в доме.

Если после включение напряжение падает, то причины могут быть такие:

  1. Сечение провода на вводе в дом не достаточное. Не достаточная толщина провода может быть причиной маленького напряжения сети, особенно при большой нагрузке.
  2. Контакт на вводе в дом подгорел и дает дополнительное сопротивление. От такого сопротивления падает напряжение, и упасть оно может достаточно высоко.
  3. Разветвление от линии к дому выполнено не качественным образом. Если контакт на смотке плохой, то повышается сопротивление, от этого падает напряжение в сети.

При маленьком сечение тепло равномерно распространяется по всей длине проводки. А вот если контакты плохие, то это повлечет за собой очень неприятные последствия. Место, где контакты плохие будет очень нагреваться и может перегореть проводка, а может возникнуть и пожар.

Если проблема с низким напряжением связана с энергопоставляющей компанией, то кажется, решение этой проблемы будет очень легко и стоит только написать заявление.

Отвечает за электрические падения или, наоборот, за высокое напряжение электросетевая компания. Именно в электросетевую или энергосбытовую компанию вам придется писать заявления, образец которых вы сможете найти на сайте, о факте падения напряжения. Пишется такое письмо не долго и как правило отвечает компания достаточно быстро, претензия рассматривается и определяется вольтаж уже на месте при помощи электриков, они определяют где напряжение просаживается, а так же осматривают нехватающие участки.

Изначально специалисты отключают свет, определяют, где находится просадка и принимают решение, что необходимо сделать в данной ситуации, кому поднять малое напряжение или снизить повышенное. Подключение, которое делается с помощью сварки, не всегда создается ситуация, которая оплачивается заявщиком, почему специалисты не всегда с охотой берутся за то чтобы повысить показатель.

Как повысить напряжение в сети до 220

Если вы написали заявление в компанию о недостаточном напряжении в сети и компания никак не реагирует и не проводит замену трансформатора на более мощный, а так же не меняет магистраль проводов на более мощное сечение, то вам придется устранять эту проблему самостоятельно. Поставщики электричества устраняя недостаточное напряжение сети сталкиваются с очень большими затратами и идут на это неохотно.

Увеличить или понизить напряжение можно и самостоятельно. Повышающий фактор всегда могут сыграть дополнительные установки, но при подключении на повышение придется приобрести немало документов, поэтому не многие решаются усилить подачу самостоятельно, это касается и той ситуации, когда напряженка высокая и ее нужно понизить. Иногда, лучший вариант – это жалоба и напряг специалистов.

Одним вариантом решения проблемы с недостаточным напряжением является подвод к дому трех фаз, но для этого вам необходимо получить разрешение в энергосбыте. Если вы получили такое разрешение, то на вводе в дом ставим переключатель фаз и при нужде используем не загруженную.

Еще несколько вариантов решения проблемы с недостаточным напряжением в сети, а именно:

  1. Проводим монтаж на вводе в дом стабилизатора напряжения, но не забывайте, то, что если напряжение будет меньше 160вольт, то в этом случае он бесполезен. Качественный стабилизатор стоит очень дорого и если по вашей улице установят десяток стабилизаторов, то сеть упадет до предела, и он не будет эффективным.
  2. Выполняем установку повышающего трансформатора с подобными параметрами. Вся проблема в том, что такой трансформатор будет выдавать необходимое напряжение, если на линии оно будет не достаточным, но если напряжение на линии нормализуется, то он поднимет его до 260 вольт и до высшего придела и все бытовые приборы просто сгорят. Для избегания такой ситуации необходимо установить реле, которое разорвет цепь при достижении предела.
  3. Также можно установить дополнительное заземление на вводе в дом. С такой установкой понижается сопротивление нуля и проводки в целом. Но такой способ повышения напряжения в сети очень опасный. Есть вероятность, что при ремонте можно перепутать этот провод с фазой и получить короткое замыкание сети, но это не самое опасное. Самое опасное если обрыв произойдет в подстанции и напряжение может пойти через этот кабель и этим самым повлечет за собой серьезные проблемы.
  4. Для собственного дома идеальным вариантом будет установка преобразователя энергии с накопителем. Это самый радикальный вариант.

Преобразователь с накопителем дает возможность получать нормальное напряжение сети в случае отключения электричества. Работает он по принципу бесперебойника для компьютера, но при этом имеет мощность от 3 до10 кВт. Также он может быть подключен к дизельному генератору, который начинает работать после отключения электроэнергии.

Дополнительный способ: как увеличить напряжение

Есть еще один способ получать достаточное напряжение сети – это использование понижающего трансформатора. Такой трансформатор понижает напряжение в пределы 12 – 36В.


Он имеет такие возможности выдерживать такое напряжение:

  • Мощность 100В нормально перенесет нагрузку в пол киловатта;
  • 1кВт может выдержать нагрузку в 5кВт.

Понижающая обмотка в квартире подключается к сети, и получаем плюс 12 – 36 вольт в зависимости от трансформатора. Для того чтобы избежать перенапряжения сети, которое может причинить множество вреда вашим бытовым приборам, оптимальным вариантом будет трансформатор на 24В, а еще лучше будет установить реле на входе после трансформатора.

Каждая область техники имеет свои знаковые устройства, глядя на которые однозначно понимаешь что, куда, откуда. Парус - это море, яхты, корабли. Пропеллер - авиация, самолеты, колесо - велосипед, автомобиль и т.д. И не всегда мы задумываемся над тем, что когда-то эти ныне простые и такие понятные устройства были очередным, иногда трудным, шагом в становлении целой отрасли техники или машиностроения.

Такая история и у хорошо известного представителя электротехники - трансформатора. В далеком уже 1831 году Фарадей вошел в историю открытием электромагнитной индукции - основного Только через 45 лет русскому ученому П. Н. Яблочкову был выдан патент на изобретение трансформатора. Две обмотки, расположенные на незамкнутом сердечнике, подтвердили возможность трансформировать, т.е. преобразовывать, изменять токи и напряжения. Самым первым был изготовлен повышающий трансформатор. Современные трансформаторы имеют размеры от сооружений в несколько этажей до крохотных изделий меньше 1 см, а их производство - это ведущая отрасль электротехнической промышленности.

В технике применяется огромное число трансформаторов различного назначения и каждый из них имеет свое специфичное название. Например, широкое применение в электролабораториях имеет повышающий который при выходном напряжении в несколько киловольт имеет напряжение питания 220 В.

Итак, трансформатор - что же это такое? Классическое определение звучит так: трансформатор - это электрическая машина, преобразующая ток входного источника питания в ток вторичной обмотки с другим напряжением. Трансформатор работает с напряжением переменного тока, т.к. эффект индукции проявляется только при изменении Передача (трансформация) энергии проходит через преобразование электрической энергии в обмотках сначала в магнитное поле, и далее - переход обратно в электрическую энергию тока, но уже во вторичной обмотке. Если вторичная обмотка по числу витков превышает первичную, то имеем повышающий трансформатор, а если подключить обмотки наоборот, то и трансформатор будет «наоборот» - понижающий.

Допустим, что необходимо в гараже, имеющем электрическую сеть 36В, подключить электропотребитель, например, блок зарядки аккамулятора с питанием 220В - типичный случай для того, чтоб применить повышающий трансформатор. Решение такой практической задачи рассмотрим пошагово.

1. Мощность зарядного устройства возьмем из паспорта - скорее всего это будет что-то около 100 Вт. Понимая, что всегда нужно иметь запас на будущее и с учетом КПД будущего трансформатора примерно 0,9, принимаем мощность первичной обмотки 150 Вт.

2. Выбираем магнитопровод. Легче всего достать О-образный магнитный сердечник (от старого телевизора). Для нас подойдет любой, у которого сечение не меньше, чем следует из соотношения: Р1= S*S/1,44 , где Р1 и S - мощность трансформатора в Ваттах и поперечное сечение сердечника в см кв. Расчет дает значение S=10,2 см2.

3. Следующий шаг самый важный при «строительстве» трансформатора - определяется количество витков на 1В: N= 50/S = 50/10,2 = 4,9 витков/В. Теперь совсем легко рассчитать количество витков(или, как говорят, «намоточные данные»), первичной и вторичной обмоток: W1=36*N=176 витков и W2=220*5= 1078 витков.

4. Определим токи обмоток. Исходим из того, что мощность каждой из обмоток примерно В таком случае, рабочие токи обмоток: J1 = 150/36=4,2А и J2 = 150/220=0,7А.

5. Теперь есть все данные для определения диаметров проводов обмоток. Так и сделаем: для первичной обмотки d1=0,8*√J1=0,8*2,05=1,64мм кв. ;

аналогично для вторичной обмотки d2=0,8*√J2 = 0,8*0,84=0,67 мм кв.

Для намотки обмоток выбираем диаметры, ближайшие из стандартных.

Все! Расчет окончен, но можно ли изготовить повышающий трансформатор своими руками? Как говорится - нет ничего проще, если сильно нужно. Реальная потребность - это основная движущая самоделкинами сила, так что дальше ручками, ручками.

6. Изготавливают два каркаса по выбранному магнитопроводу.

7. На каркасы плотной укладкой наматывают по половине первичной обмотки и изолируют ее стекло- или лакотканью.

9. Сборка магнитопровода, стяжка его частей хомутом - проблема не очень сложная. При сборке магнитопровода желательно его половинки склеить любым составом с применением ферропорошка - это позволит исключить «гудение» устройства при работе.

Вот и все! Наша самоделка, стоит думать, будет работать долго и в радость. А кто бы сомневался!

Трансформатор, устройство, которое передает электрическую энергию от одной части схемы к другой за счет магнитной индукции и, как правило, с изменением величины напряжения. Трансформаторы работают только с переменным электрическим током (AC).

Трансформаторы имеют важное значение в распределении электроэнергии. Они повышают напряжение, вырабатываемое на электростанциях до высоких значений с целью эффективной передачи электроэнергии. Другие трансформаторы понижают это напряжение в местах потребления.

Многие бытовые приборы оборудованы трансформаторами, для того чтобы по мере необходимости повысить или понизить напряжение поступающее из домашней электросети. Например, для работы телевизора и аудиоусилителя необходимо повышение напряжения, а для работы дверного звонка или термостата низкое напряжение.

Как работает трансформатор

Как правило, простой трансформатора состоит из двух катушек намотанных изолированным проводом. В большинстве трансформаторов, провода намотаны на стержень из железа, называемый сердечником.

Одна из обмоток, ее еще называют первичной обмоткой, подключается к источнику переменного тока, что в свою очередь приводит к появлению постоянно переменного магнитного поля вокруг обмотки. Это переменное магнитное поле, в свою очередь, создает переменный ток в другой обмотке (вторичной обмотке).

Величина, определяемая как отношение числа витков в первичной обмотке к числу витков во вторичной обмотке, определяет масштаб понижения или повышения напряжения во вторичной обмотки. Данную величину еще называют коэффициентом трансформации.

Например, если у трансформатора имеется 3 витка первичной обмотке и 6 витков во вторичной обмотки, то напряжение во вторичной обмотке будет в 2 раз больше, чем в первичной. Такой трансформатор называется повышающий трансформатор.

И на оборот, если есть 6 витков в первичной обмотке и 3 виток во вторичной, то напряжение снимаемое с вторичной обмотки будет в 2 раз ниже чем в первичной обмотке. Этот вид трансформатора носит название понижающий трансформатор.

Так же следует иметь ввиду, что соотношение тока в обеих катушках находится в обратной зависимости к соотношению их напряжений. Таким образом, электрическая мощность (напряжение умноженное на силу тока) является одинаковой в обеих катушек.

Импеданс (сопротивление потоку переменного тока) первичной катушки зависит от импеданса вторичной цепи и коэффициента трансформации. При правильном соотношении витков трансформатора можно добиться практически одинакового сопротивления обоих контуров.

Согласованные сопротивления имеют важное значение в стерео системах и других электронных систем, потому это позволяет передавать максимальное значение энергии от одного блока схемы другому.

Что и зачем повышает трансформатор? И за чей счёт?

Мы уже рассматривали, что такое трансформатор, теперь давайте немного подробнее рассмотрим, что такое повышающий трансформатор и для чего он используется. Начнём с простого примера, который поможет понять, зачем нужны повышающие трансформаторы.

Возьмите фонарик и убедитесь, что батарейки не сели, и лампочка ярко горит. А теперь выкрутите голову фонарика, и запитайте лампочку через кабель длиной метров 50-т. Сделайте это сами, если не поверите нам, что лампочка не загорится. Происходит это по причине слишком больших потерь в линии для этого напряжения. Отметим слово «напряжение».

Примерно то же самое произойдёт в обычной линии между двумя городами, если в линии будет 220В. Если в такой электропроводке отсутствует трансформатор, повышающий напряжение, до второго города электричество не доберётся, оно всё уйдёт на потери. По причине этих потерь энергетики и используют схему, при которой после генерации электричества, значительно повышается напряжение в точке генерации, электричество по линиям высоких напряжений передаётся потребителю, где потом понижается до нужного значения и раздаётся потребителям.

Итак, очень грубыми мазками схема в этом случае выглядит так:

  • Генератор, вырабатывающий электроэнергию;
  • Повышающий трансформатор;
  • Линия передачи энергии;
  • Понижающий трансформатор;
  • Местные электросети;
  • Потребитель электроэнергии.

Для наглядности можно привести вот такую картинку:

Почему именно энергетика? Дело в том, что это основная сфера применения повышающих трансформаторов, если говорить об удельном вкладе трансформаторов в трансформацию электроэнергии. То есть именно в этой сфере они наиболее востребованы, и без них невозможно представить современные энергосистемы.

Для того чтобы понять, каким образом напряжение из 110В повышается до 220В, или меняются токи, нужно вспомнить о том, что закон сохранения энергии никто не отменял и никакого «дармового» электричества трансформатор не вырабатывает. Кстати, именно на манипулировании законами физики строится , стоит их воткнуть в розетку.

Как раз наоборот, повышающий трансформатор отлично иллюстрирует закон сохранения энергии. Почему? Да потому, что если рассмотреть трансформатор как замкнутую систему, то мы получим:

  • Входящую энергию (U1) на первичной обмотке (электричество), количество витков которой обозначается N1;
  • Индуцированное в магнитопроводе (сердечнике) переменное магнитное поле;
  • Исходящую энергию (U2) на вторичной обмотке, количество витков N2.

(Отношение U2 к U1 даёт параметр k, называемый коэффициентом трансформации.)

Так вот, если в этой системе количество витков будет одинаковым, то мы получим на выходе то же самое напряжение, минус потери в самом трансформаторе. Это первая иллюстрация. Вторая заключается в том, что если количество витков будет различаться, то мы получим на выходе напряжение выше или ниже, но при этом в замкнутой системе «трансформатор» мощность останется одинаковой на входе и выходе (минус потери в самом трансформаторе).

На заметку . Это стоит ещё раз обдумать. Некоторые эффекты в электротехнике кажутся неспециалистам чудом, но все эти эффекты всегда точно соответствуют закону сохранения энергии. Поэтому прежде чем думать, как выбрать и куда установить прибор, «который точно сэкономит много денег», вспомните про этот пример.

Таким образом, повышающий трансформатор работает в строгом соответствии с законами сохранения энергии и электромагнитной индукции в сетях переменного тока, изменяя напряжение и токи, но не изменяя мощность.

А можно ли заменить трансформатор?

Виды, типы и сферы применения трансформатора повышающего напряжения найти в сети не просто, а очень просто. Пробежимся, чтобы не искать:

  • По фазности (одна или три);
  • По обмоткам (две или три (разновидности с расщеплённой обмоткой)). Однообмоточные тоже есть, это автотрансформаторы;
  • По изоляции (масляные, сухие и с негорючим заполнением);
  • По роду охлаждения (масляное – естественное, с воздушным дутьём и с принудительной циркуляцией, воздушное и при помощи азотной подушки).

Маркировка повышающих трансформаторов (точнее всех трансформаторов) выглядит так:

Все эти приборы хорошо описаны, распространены и имеют самые разные сферы применения: от крупной энергетики, до очень небольших бытовых приборов.

На самом деле, большинство трансформаторов, повышающих напряжение, заменить другими приборами просто невозможно, но, тем не менее, как сказал классик – «Незаменимых людей нет» (с).

Изменить в электросети напряжение или токи можно и другими способами, причём потери окажутся сравнимыми, а в ряде случаев даже ниже. Один из примеров это так называемая Т-образная схема трансформации:

Может показаться, что это, собственно говоря, и есть схема трансформатора, повышающего или понижающего. Но на самом деле разница вот в чём:

Это как раз схема трансформатора, из которой прекрасно видно, что обмотки между собой никак не связаны, и ток во вторичной обмотке индуцируется без участия проводов, если можно так выразиться. А вот в Т-образной схеме замещения трансформатора хорошо видно, что разрыва проводов нет.

При этом, мы так же, как в повышающем трансформаторе получим различные напряжения U1 и U2. Такие способы применяются там, где использовать обычный трансформатор, повышающий напряжение не представляется возможным. Так что, трансформатор можно собрать своими руками и подключить там, где надо, если есть такая необходимость.

На правах заключения несколько слов о судьбе трансформаторов

Не думайте, что мы решили удариться в фантастику, мы люди практичные и реалисты. Но, тем не менее, сегодня в плане генерации дело обстоит таким образом, что вполне возможно, трансформаторы через десяток лет не будут иметь такого широкого применения. Пример чуть выше, это только один из вариантов, но главное не в этом.

Конечно, они будут служить ещё десятки лет, но в главной сфере использования - энергетике, повышающий трансформатор нужен только как вторичный, вспомогательный прибор. И нужен он только для передачи электроэнергии на большие расстояния. Однако уже сегодня видно, что за последние 30-ть лет фокус этого применения всё больше смещается в сторону крупных предприятий. Если 30-ть лет назад частный дом, не подключенный к электросети, был экзотикой, то сегодня есть уже целые посёлки, которые никак не используют сети общего назначения. Более того, эти посёлки сами являются генерацией, подпитывая энергосистемы излишками энергии.

Это прогресс и процесс, который им однажды запущен, обязательно придёт к логическому завершению. Лампа накаливания, пожалуй, один из первых приборов, получивший широкое распространение, и ещё 50-ть лет назад многим казался вечным атрибутом системы освещения. Но процесс идёт и уже через десяток лет это будет анахронизм. Не считайте это лирическим отступлением, это относится поголовно ко всем электроприборам. Именно по этой причине мы так насторожено относимся к новинкам, часть из которых откровенное надувательство, а часть тупиковые ветви эволюции, как, например .

Одна из задач, которую пытается решать наш коллектив авторов, это как раз попытаться спрогнозировать, оценить на уровне инстинкта, если угодно, какие из новинок займут достойное место в наших домашних электросетях, а какие останутся дорогими игрушками и бесполезной тратой денег. Мы, конечно, можем ошибаться, но будем стараться аргументировать своё понимание этих вопросов, особенно в краткосрочных перспективах.


Преобразование напряжения присутствует повсеместно в любой области нашей жизни и деятельности. Вырабатываемое на электростанции напряжение повышается до нескольких киловольт, чтобы быть переданным с наименьшими потерями через линии электропередач на многие тысячи километров. А потом оно снова понижается на трансформаторных подстанциях до привычных нам значений в 380/220 вольт.

Самые простые и понятные примеры для простого человека: сетевое зарядное устройство для автомобильного аккумулятора, блок питания в компьютерной и другой технике, инвертор для автономного электроснабжения 220 вольт от низковольтных источников питания, понижающие трансформаторы 220-115 и т.д.

В общем, есть много устройств, в которых установлен трансформатор напряжения. Рассмотрим его немного подробнее, не погружаясь в излишние сложности.


Изменяет величину напряжения в большую или меньшую сторону в зависимости от соотношения числа его обмоток:

  • первичной, на которую подаётся исходное напряжение;
  • вторичной, с которой снимается его преобразованное значение.

Все обмотки намотаны на общем сердечнике (магнитопроводе). Если число витков у вторичной обмотки больше, чем у первичной, то это повышающий трансформатор, если меньше - понижающий.

Мощность трансформатора напряжения зависит от сечения проводов обмоток, а габариты и вес - от типа сердечника и материала проводов (медь или технический алюминий). По исполнению он может быть одно- и трёхфазным. Самым компактным и лёгким является автотрансформатор, в котором всего одна обмотка.


Первая мысль, которая приходит на ум, когда напряжение в сети всё чаще и чаще становится низким, поставить повышающий трансформатор. На первый взгляд кажется, что это - простое и отличное решение, и теперь, наконец-то, будет нормальное напряжение, яркое освещение и стабильно работающие электроприборы.

Но не всё так просто в сказочном королевстве, и прежде чем купить повышающий трансформатор напряжения, цена на который уж очень привлекательна, задумайтесь об одной особенности его работы: он имеет постоянный коэффициент повышения напряжения (коэффициент трансформации). Рассмотрим это на примере.

Предположим, что у вас сетевое напряжение порядка 170 вольт. Чтобы повысить его до 220, нужен трансформатор с коэффициентом трансформации 1.29 (220/170). Вроде бы всё хорошо и логично получается, за исключением одного: если напряжение в сети станет нормальным 220 вольт, то на выходе трансформатора будет уже очень высокое напряжение 285 вольт (220*1.29)! Не все электрические приборы способны выдержать такое перенапряжение в течение даже небольшого времени. Так и до пожара недалеко!

Как вариант, можно приобрести регулируемый автотрансформатор, т.н. ЛАТР, в котором предусмотрен ручной регулятор выходного напряжения. Но и он не будет являться надёжным решением, т.к. придётся постоянно контролировать значение выходного напряжения по индикатору и корректировать его вручную, особенно во время максимальной нагрузки электросети со стороны соседей. Если вовремя этого не делать, то при первом же скачке в электросети напряжение на выходе ЛАТРа тоже резко повысится, и подключенные электроприборы вполне могут перегореть.

Поэтому повышающие трансформаторы напряжения применимы лишь тогда, когда в сети ВСЕГДА существенно меньше 220 вольт, а такого практически никогда и не бывает .

Заключение

Задачу автоматического поддержания напряжения на постоянном уровне решает